World's smallest data memory: a single atom

World's smallest data memory: a single atomResearchers at the Max Planck Institute of Quantum Optics have created the world's smallest data memory, storing quantum information in a single atom.

They successfully wrote the quantum state of single photons into a rubidium atom and read it out again after a certain storage time.

The technique could in theory be used to design powerful quantum computers and network them with each other across large distances.

Using a single atom as a storage unit has several advantages - the extreme miniaturization being only one, says researcher Holger Specht. The stored information can be processed by direct manipulation on the atom, which is important for the execution of logical operations in a quantum computer.

"In addition, it offers the chance to check whether the quantum information stored in the photon has been successfully written into the atom without destroying the quantum state," he says. This makes it possible to check at an early stage if a computing process needs to be repeated because of a storage error.

Until now, it's been impossible to exchange quantum information between photons and single atoms, because the interaction between them is very weak. But the Max Planck team achieved this by placing a rubidium atom between the mirrors of an optical resonator, and then using weak laser pulses to introduce single photons into the resonator.

The mirrors of the resonator reflected the photons to and fro several times, which strongly enhanced the interaction between photons and atom.


The storage time - ie, the time the quantum information in the rubidium can be retained - was measured at around 180 microseconds.

"This is comparable with the storage times of all previous quantum memories based on ensembles of atoms," says Stephan Ritter.

But the team acknowledges that a much longer storage time would be necessary for the method to be used in a quantum computer or a quantum network.

The storage time is mainly limited by magnetic field fluctuations from the laboratory surroundings, says Ritter. "It can therefore be increased by storing the quantum information in quantum states of the atoms which are insensitive to magnetic fields," he suggests.

Source: TG Daily

Tags: technologies

Add comment

Your name:
Sign in with:
Your comment:

Enter code:

E-mail (not required)
E-mail will not be disclosed to the third party

Last news

Samsung Galaxy Tab S4 will boast a larger 10.5-inch display with 2560 x 1600 pixels resolution
The new power scheme will allow users to extract slightly more performance out of their machines
Huawei's P20 family of smartphones is scheduled for a March 27 announcement in Paris
New stats show Amazon surpassed Microsoft this week
Qualcomm and Broadcom executiveswere met in February 14
Gmail Go at its core will do what the regular Gmail app does
Qualcomm didn’t say who is building the X24 modem
The Samsung Galaxy A5 (2017) Review
The evolution of the successful smartphone, now with a waterproof body and USB Type-C
February 7, 2017 /
Samsung Galaxy TabPro S - a tablet with the Windows-keyboard
The first Windows-tablet with the 12-inch display Super AMOLED
June 7, 2016 /
Keyboards for iOS
Ten iOS keyboards review
July 18, 2015 /
Samsung E1200 Mobile Phone Review
A cheap phone with a good screen
March 8, 2015 / 4
Creative Sound Blaster Z sound card review
Good sound for those who are not satisfied with the onboard solution
September 25, 2014 / 2
Samsung Galaxy Gear: Smartwatch at High Price
The first smartwatch from Samsung - almost a smartphone with a small body
December 19, 2013 /

News Archive



Do you use microSD card with your phone?
or leave your own version in comments (6)