Increasing the speed and efficiency of racetrack memory

Increasing the speed and efficiency of racetrack memoryRacetrack memory has attracted attention in the last two years because it's a possible replacement for flash and conventional magnetic disks. Racetrack memory devices can potentially have storage densities hundreds of times greater than flash memories, but read/write speed and power consumption remain substantial technological hurdles. The problems arise from the physics of racetrack memory devices, so performance gains must come from an improved scientific understanding of the underlying processes rather than improved device fabrication.

In a nutshell, racetrack memory works by cycling magnetic domains (bits of memory) along ferromagnetic nanowires using a spin polarized current. A transistor in the center of the wire reads and writes data as the bits are moved up and down the nanowirewire. For a full description of the technology, check out Matt Ford's previous coverage.

The key to increasing speed and efficiency in racetrack memory devices is understanding the interaction between spin polarized current and domain wall motion in the nanowires. A team from Texas A&M University recently solved the equations of motion for magnetic domain walls in nanowires under various current conditions. They found that both the efficiency and speed of domain wall motion could be dramatically increased using a series of current pulses rather than DC, AC, or a combination of the two. Most importantly, they show that the optimum pulse conditions can be calculated using basic electrical properties of the nanowire, which are relatively easy to measure.

There is a lot to like here, but one important aspect is the choice of model. Most work on domain wall motion relies on complex numerical codes that tend to hide the underlying physics of the process. This work uses much more basic magnetisation theory so that the physics and implications of the model are transparent and understandable. The conclusions provide clear, testable conditions that can be realized in the lab, and, if the predictions are accurate, demonstrable increases in device speed and efficiency.

Source: ars technica

Comments
Add comment

Your name:
Sign in with:
or
Your comment:


Enter code:

E-mail (not required)
E-mail will not be disclosed to the third party


Last news

 
Google’s voice assistant platform has been known as Google Now
 
The SanDisk 1TB SD card prototype represents another significant achievement as growth of high-resolution content
 
Microsoft is developing a new “Skype for Life” client
 
Siri on the Mac is new, and is similar to that on the iOS
 
The latency in this test was supposedly no more than 2 milliseconds
 
Apple has made to the iPhone 7/7 Plus is by making the home button a solid state button
 
Android Nougat should eventually extend back to the Galaxy S6 generation
 
You’re not supposed to expose the iPhone to water anyway
Samsung Galaxy TabPro S - a tablet with the Windows-keyboard
The first Windows-tablet with the 12-inch display Super AMOLED
June 7, 2016 /
Keyboards for iOS
Ten iOS keyboards review
July 18, 2015 /
Samsung E1200 Mobile Phone Review
A cheap phone with a good screen
March 8, 2015 / 4
Creative Sound Blaster Z sound card review
Good sound for those who are not satisfied with the onboard solution
September 25, 2014 / 2
Samsung Galaxy Gear: Smartwatch at High Price
The first smartwatch from Samsung - almost a smartphone with a small body
December 19, 2013 /
HP Slate 7 is a 7-inch Android 4 Tablet PC with good sound
A cost-effective, 7-inch tablet PC from a renowned manufacturer
October 25, 2013 / 4
 
 

News Archive

 
 
SuMoTuWeThFrSa
    123
45678910
11121314151617
18192021222324
252627282930 




Poll

Do you like Windows 10?
or leave your own version in comments (32)